Menu

Sunday, June 30, 2019

Latihan Soal Geometri Datar dan Ruang


1.     Diketahui sebuah kubus ABCD.EFGH. tentukan jarak F ke bidang BEG jika panjang rusuk                 kubus tersebut adalah 25 cm!
2.     Konstruksilah dua buah garis, sedemikian hingga kedua garis tersebut bersilangan!
3.     Pada dimensi tiga, jika g dan h tidak saling bersilangan maka pasti sejajar!
4.     Perhatikan gambar di bawah ini!
        
             Jika AD : AB = 1 : 3, dan AC = AB maka buktikanlah segitiga BDO kongruen segitiga COE!

Saturday, April 20, 2019

Uji Validitas Butir


Uji coba instrumen didasarkan pada jenis-jenis instrumen. Jenis instrumen yang dimaksudkan adalah instrumen dikotomi dan politomi.
·         Instrumen Dikotomi
Instrumen dikotomi dapat didefinisikan sebagai intrumen dengan dua kemungkinan skor (0 dan 1). Salah satu jenis instrumen dikotomi pada penelitian adalah tes obyektif. Tes obyektif dikatakan instrumen dikotomi karena kemungkinan skor yang didapat siswa per butir soal adalah 0 atau 1. Jika siswa yang menjawab butir soal dengan benar maka mendapat skor 1, sedangkan jika siswa menjawab butir soal salah maka mendapat skor 0.
Uji validitas butir dilakukan untuk menguji ketepatan instrumen dalam mengukur suatu variabel penelitian. Sebagai analogi, kapak  valid digunakan untuk memotong pohon besar, namun tidak valid digunakan untuk memotong kertas. Sebaliknya gunting valid digunakan untuk memotong kertas namun tidak valid bila digunakan untuk memotong pohon besar. Hal yang sangat perlu diingat pada uji validitas adalah yang diuji valid adalah masing – masing butir instrumen.
Uji validitas butir untuk instrumen dikotomi menggunakan rumus korelasi point biseral sebagai berikut.
Keterangan:
Mp               :Rata- rata skor total dari subyek yang menjawab betul untuk butir yang dicari validitasnya.
Mt                     : Rata-rata skor total
SDt                 : Standar Deviasi skor total
 p                : proporsi siswa yang menjawab benar butir yang dicari validitasnya
q                 : proporsi siswa yang menjawab salah butir yang dicari validitasnya (q = 1-p)
Hasil yang didapatkan (rpbi) selanjutnya dibandingkan dengan rhitung dengan pedoman penarikan kesimpulan adalah
·         Jika rpbi > rhitung maka butir dinyatakan valid
·         Sebaliknya jika rpbirhitung maka butir dinyatakan tidak valid.

·         Instrumen Politomi
Instrumen politomi dapat didefinisikan sebagai instrumen dengan kemungkinan skor per butir yang memiliki banyak kemungkinan skor (tidak hanya 1 atau 0 saja). Pada penelitian instrumen politomi adalah tes essay, angket dan kuisioner.
Uji validitas dilakukan untuk memastikan seberapa baik suatu instrumen digunakan untuk mengukur konsep yang seharusnya diukur. Menurut Sugiyono (2010) untuk menguji validitas dilakukan dengan mengkorelasikan antara skor butir pertanyaan dengan skor totalnya. Rumus yang digunakan untuk menguji validitas instrument adalah Korelasi Product Moment, sebagai berikut.

Kemudian hasil dari rxy dibandingkan dengan nilai kritis product moment (rtabel). Jika hasil yang diperoleh rxy > rtabel  maka butir instrumen yang diuji dinyatakan valid.




Thursday, April 18, 2019

Menentukan Jarak Antara Titik dengan Garis Pada Bidang Datar


Pada kedudukan titik di luar garis, tentulah terdapat jarak antara titik dengan garis.Berikut adalah langkah-langkah menentukan jarak antara titik dengan garis pada bidang datar.
1.    Proyeksi sebuah titik A pada sebuah garis g dapat diperoleh dengan menarik garis tegak lurus terhadap garis g.
2.    Perpotongan garis tegak lurus dari titik A dengan garis g yaitu titik A’, disebut proyeksi titik A pada garis g.
3.    Jarak antara titik A dan garis g adalah panjang ruas garis yang tegak lurus dari titik A ke garis g atau panjang ruas garis lurus dari titik A ke titik proyeksinya di A’ pada garis gdisebut d.
4.    Untuk menghitung jarak antara titik A dan garis g dibuat segitiga yang memuat titik A dan garis g, kemudian dapat digunakan aturan sebagai berikut:
a.    Teorema Phytagoras
Misalnya suatu titik Ake garis BC membentuk suatu bidang berbentuk segitiga sama kaki seperti gambar berikut.
Maka, jarak terdekat titik A ke garis BC adalah AA’
Titik AA’ dapat ditentukan dengan teorema phytagoras, yakni:
 Luas segitiga

Misalnya suatu titik Ake garis BC membentuk suatu bidang berbentuk segitiga siku-siku seperti gambar berikut.
Maka, jarak terdekat titik A ke garis BC adalah AA’.
Titik AA’ dapat ditentukan dengan luas segitiga ABC yang dapat dihitung dengan cara berikut:
 

 Trigonometri

Misalnya suatu titik Ake garis BC membentuk suatu bidang berbentuk segitiga sembarang seperti gambar berikut.
Maka, jarak terdekat titik A ke garis BC adalah AA’.
Titik AA’ dapat ditentukan dengan luas segitiga ABCyang dapat dihitung dengan cara berikut:
Berdasarkan aturan sinus, diperoleh persamaan
Berdasarkan aturan cosinus, diperoleh nilai cos B
Melalui nilai cos B dapat ditentukan nilai sin B
Nilai sin B kemudian disubstitusikan ke persamaan
d.    Jarak titik A (a,b) dengan garis g dengan persamaan px + qy + r = 0

 
Jarak dua objek adalah panjang lintasan terpendek yang menghubungkan kedua objek tersebut. Ruas garis yang tegak lurus dengan garis px + qy + r = 0 dan memiliki ujung di titik A dan ujung satunya di garis tersebut merupakan lintasan terpendek yang menghubungkan titik dan garis tersebut disebutd, yaitu jarak titik A terhadap garis px + qy + r = 0.
Gradien garis px + qy + r = 0 adalah −(p/q)
Maka gradien garis yang tegak lurus dengan garis px + qy + r = 0 adalah q/p, karena −(p/q) × q/p = −1. Selain tegak lurus dengan garis px + qy + r = 0, garis tersebut juga melalui titik A(a, b), sehingga
Diperoleh, persamaan garis yang tegak lurus dengan garis px + qy + r = 0 dan melalui titik A(a, b) adalah
Setelah persamaan garisnya diperoleh, titik potong garis px + qy + r = 0 dan garis tersebut dapat ditentukan.
Pertama, tentukan nilai absisnya, x2,  terlebih dahulu.

Selanjutnya, kita tentukan nilai dari ordinatnya (y2).

Setelah koordinat (x2, y2) sudah ditemukan, maka selanjutnya kita tentukan jarak antara titik tersebut dengan titik A(a, b), dengan menggunakan rumus jarak antara dua titik,
Agar lebih sederhana, kita tentukan x2x1 dan y2y1 terlebih dahulu, yaitu
 
 
 
Sehingga jarak antara titik (x2, y2) dan A(a, b) dapat ditentukan sebagai berikut.
 
Sehingga jarak antara titik A yang memiliki koordinat (a, b) dengan garis lurus yang persamaannya px + qy + r = 0 adalah

 Soal Latihan Bagian 1.

 1. Perhatikan gambar di bawah ini.


Diketahui sebuah jajargenjang ABCD. Panjang DC = 30 cm, panjang BE = 5 cm serta panjang BC = 12 cm. tentukan jarak titik D dengan garis AB, dimana BC ┴ BE!.


2. Jika terdapat sebuah garis dan sebuah titik di luar garis tersebut, maka buktikanlah ada        tepat satu garis yang tegaklurus dengan garis yang diketahui!

3. Pada dimensidua, diketahui dua buah garis (missal k  dan l). Konstruksilah langkah – langkah      untuk menentukan kondisi g sedemikian hingga g k dan      g l !
4. Perhatikan gambar di bawah ini
Diketahui sebuah persegi ABCD. F adalah titik tengah OB serta panjang AB dua kali panjang EF. Jika panjang AC = 60 cm, maka tentukanlah jarak O ke garis EF!


 Soal Latihan Bagian 2.

1. Dwi berangkat dari kota A ke arah timur sejauh 13 km, setelah itu Dwi mengubah arah menuju barat laut sejauh 5 km. Lalu kembali menuju ke arah timur sejauh 13 km sehingga sampai di kota B. Tentukanlah jarak kota A dan kota B!

2. Pada dimensi dua, jika A = g ∩ l, mungkinkah ada k yang tegaklurus g dan sejajar l? jika ya, konstruksilah langkah-langkah agar kondisi tersebut terjadi, jika tidak, berikan alasannya!

3. Buktikan bahwa jika sebuah garis memotong dua garis sekaligus maka kedua garis tersebut sejajar!